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Abstract. It is shown that a kind of solution of the n-simplex equation can be obtained from
representations of the braid group. The symmetries in its solution space are alse discussed.

Recently much interest has ‘been paid to the investigation of the higher-dimensional
integrable systems in the quantum field theory (1] and in the statistical mechanics [2].
For the tower dimension case, the Yang-Baxter equation (YBE) plays a crucial role of
which the structure is now fairly well understood, As a substitution of YRE the tetrahedron
equation becomes an integrability condition of the exactly-solved model in three dimensions
(3], from which the community of the layer-to-layer transfer matrices is preserved. One
of the approaches is the n-simplex equation [4] and it is said that the case of n = 3
corresponds to the tetrahedron equation. The aim of this letter is to expose some procedure
for deriving solutions of the n-simplex equation from braid group representations (i.e.
solutions of parameter-independent YBE) [5]. .Meanwhile we would like to derive some
symmetry transformations in sclution space of the 3-simplex equation as an example.
The 3-simplex equation we will consider takes the following form: ) ’

Ri23 Rp1a R341 Razo = RppaRisaRan Rag M

where the order of subscripts are chosen in such a way that the normal of each surface of
the 3-simplex is always towards the inside of the 3-simplex (tetrahedron).
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Certainly, the positive direction of the normal is determined by right-hand helicity, for

example, (123}, (341), .... The matrices in (1) stands for the scattering of three strings, for
example,
Rowalten, o, 13, e} = Z R eIV v, 3, va) . @
U]

Solving solutions of (1) is a complicated problem. It is known that many representations
of the braid group have been found in recent years. We will show that if one has a
representation of the braid group, one can cbtain 4 kind of solution of the 3-simplex
equation. A braid group is a category of the free group under the constraint of the following
equivalence relations:

bibiy1b; = biprbibig

b,‘bj =bjb,' for Ii —_]] =>1.
It is called a braid group due to its simple realization on N-strings by the identity

i+l

| S i+l 1 i
1..><- .<_>b‘- .-><.. <_>'b,"l,

Then the equivalence relation (3) becomes an evident topological equivalence relation.
If a representation of braid group is

pibi—> Sy =IVg®...1%Vgse [t g... /W @

where § € End{V ® V) satisfying the following parameter independent Yang—Baxter
equation:

3

S12823812 = 523512823 . )
If we define an operator

i=1

t = ﬁnb,-

i=1 j=1
which is understood as an ordered product from right to left or vice versa. We can show
that the following identity holds:

tiatils ... =6t ... (6)

where the number of #’s in the alternative product is # + 1. The case n = 2 is exactly the
elementary equivalence relations of braid group (3). For n =3 we have

hiatiby = Bahifat )]

where #| = b1byb; and t = b3bsby. Thus, if we know a representation of a braid group,
we will have a solution of the following equation:

ﬁlﬂéﬂttél%ﬁ%d» = fézuémiémﬁns t)]
where 13.‘123 = R® I, §234 =I@RandRe End(V ® V & V). This is easily realized by
pih—r 1§|23

due to 11 = bbby etc, then the following identities holds:
Rizs = S1uSnS® [ ete. c))
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As to (8), one may find some symmetry transformation of it. If one writes out (8) into
a component form instead of a matrix form, one can easily find that the equation can be
symbolized by a Kauffman diagram. That says if we denote

abc abec
RXE:}C i % ) é—iggf ~ﬁ -
de f def

The inverse relation and (8) are depicted, resﬁectively, as

and

(10)

e fgh

where the inner line connecting legs of two shadows implies the summation over the repeated
labels on the legs, and a simple vertical line stands for a unit matrix. It is not difficult to
find that the diagram (10) has the following symmetries.

Flipping via a horizontal axis, denoted by H

e fgh

(11)
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or flipping via a vertical axis denoted by V

d ¢c b a
= (12)
h g fe
or via both in term VH = HV.
hgfe hgrfe
= (13}

d c b a

Thus we have

o 2 @
Vi v
©® £ o

and H? = id, V? = id, HV =-VH. All the four diagrams (10)-(13) depict the same
equation (8). So the solution space of (8) has a discrete group symmetry. {id, H, V, VH|H?
= id, V? = id, HV = V H}. The action of this group brings one solution of) into the

. s e : . x abe 4 ~ abe >
other three new solutions, i.e. if R4 is a solution of (8), then R'y,; = R§%, Ry, = R4

bt
and By; = R will be solutions of (8).

Furthermore, if giving a direction to the Kauffman diagram ﬁgf} ~ , and adding

a minus sign to the labels on the tip of the arrow, we can find that the summation of
such Iabels on both sides of the diagram (10) are equal. This brings about a continuous
transformation from a solution of (8) into angther

Ri — Ry = prriomdoet Rate, (14)
Starting from the matrix form of (8), we can obtain two more continuous transformations in
solution space. They are an overall factor transformation R — TR; a similar transformation
by a tensor product of matrices R~ (A®A®A)§(A“®A“ ®A~"). Because eigenvalues
of a matrix are invariant under a similar transformation, the latter is a transformation within
the subset of solution space, which is specified by the eigenvalues of X.
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In the above we have dicussed (8) in detail. Now we introduce a new R-matrix
R=RP (15)

where P is defined as
Plut, pa, #3) 7= 143s f2, f1} -

Then we can show the R-matrix satisfing the following equatlon as long as the R-matrix
satisfies (8):

R123 Ra14Rag1 Razay = RosaRiqa Ry Rany (16)

which is an variant of the FM 3-simplex equation we have introduced at the beginning of
our discussion.

In a similar way, one may discuss the case of a 4-simplex equation and so on. The
key point is that (6) is an identity on the braid group, then if one has a representation of
the braid group, one can write down an expression from the expression of ¢; on the basis
of S-matrix, which is supposed to be a solutlon of the parameter-independent Yang—Baxter
equanon

One of the authors (Z-NH) would like to thank H Yan for interesting discussions.
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